3
Likelihood

The purpose of models is to allow us to use past observations (data) to
make predictions. In order to do this, however, we need a way of choos-
ing a value of the parameter (or parameters) of the model. This process
is called parameter estimation and this chapter discusses the most impor-
tant general approach to it. In simple statistical analyses, these stages of
model building and estimation may seem to be absent, the analysis just
being an intuitively sensible way of summarizing the data. However, the
analysis is only scientifically useful if we can generalize the findings, and
such generalization must imply a model. Although the formal machinery
" of modelling and estimation may seem heavy handed for simple analyses,
an understanding of it is essential to the development of methods for more
difficult problems.

In modern statistics the concept which is central to the process of pa-
rameter estimation is likelihood. Likelihood is a measure of the support
provided by a body of data for a particular value of the parameter of a
probability model. It is calculated by working out how probable our ob-
servations would be if the parameter were to have the assumed value. The
main idea is simply that parameter values which make the data more prob-
able are better supported than values which make the data less probable.
In this chapter we develop this idea within the framework of the binary
model.

3.1 Likelihood in the binary model ,

Fig. 3.1 illustrates the outcomes observed in a small study in.which 10
subjects are followed up for a fixed time period. There are two possible
outcomes for each subject: failure, such as the development of the disease of
interest, or survival. We adopt a binary probability model for the outcome
for each subject in which failure has probability = and survival has proba-
bility 1 — w. The complete tree would have many branches but only those
corresponding to the observed study result is shown in full. To calculate
the probability of occurrence of this result we simply multiply probabilities
along the branches of the tree in the usual way:

axTx(1=7) % x(1-7)=(x)*1-7)°.

LS
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Fig. 3.1. Study outcomes for 10 subjects.

This expression can be used to calculate the probability of the observed
study result for any specified value of w. For example, when 7 = 0.1 the
probability is

(0.1)* x (0.9)% = 5.31 x 107°

and when 7 = 0.5 it is
(0.5)* x (0.5)% = 9.77 x 10™%.

The results of these calculations show that the probability of the observed
data is greater for m = 0.5 than for # = 0.1. In statistics this is often
expressed by saying that # = 0.5 is more likely than 7 = 0.1, meaning
that the former value is better supported by the data. In everyday use the
words probable and likely mean the same thing, but in statistics the word
likely is used in this more specialized sense. .

Exercise 3.1. Is # = 0.4 more likely than 7 = 0.57

The result of the expression

(m)*a -,

is a probability, but when we use it to assess the amount of support for
different values of = it is called a likelihood. More generally, if we observed
D failures in N subjects, the likelihood for = would be

(W)D(l - ﬂ-)N_‘D>

and we shall call this expression the Bernoulli likelihood, after the Swiss
mathematician. Because there are so many possible outcomes to the study,
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Fig. 3.2. The likelihood for .

the likelihood (which is the probability of just one of these) is a small
number. However, it is not the absolute value of the likelihood which should
concern us, but its relative value for different choices of 7.

Returning to our numerical example, Fig. 3.2 shows how the likelihood
varies as a function of 7. The value 7 = 0.4 gives a likelihood of 11.9 x 1074,
which is the largest which can be achieved. This value of 7 is called the
most likely value or, more formally, the mazimum likelihood estimate of .
It coincides with the observed proportion of failures in the study, 4/10.

3.2 The supported range for =

The most likely value for 7 is 0.4, with likelihood 11.9x10~%. The likelihood
for any other value of 7 will be less than this. How much less is measured
by the likelihood ratio, which takes the value 1 when 7 = 0.4 and values less
than 1 for any other values of 7. This provides a more convenient measure
of the degree of support than the likelihood itself. It can be used to classify
values of 7 as either supported or not according to some critical value of
the likelihood ratio. Values of n with likelihood ratios above the critical
value are reported as ‘supported’, and values with likelihood ratios below
this critical value as ‘not supported’. The supported range for 7 is the set
of values of 7 with likelihood ratios above the critical value. The choice of
the critical value is a matter of convention.

For our observation of 4 failures and 6 survivors, the likelihood ratio

as a function of 7 is shown in Figure 3.3. We have used the number 0.258
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Fig. 3.3. The likelihood ratio for .

for the critical value of the likelihood ratio and indicated the limits of the
supported range with the two arrows. The range of supported values for 7 is
rather wide in this case: from 0.17 to 0.65.* For any choice of critical value
the width of the supported range reflects the uncertainty in our knowledge
about 7. The main thing which determines this is the quantity of data
used in calculating the likelihood. For example, if we were to observe 20
failures in 50 subjects, the most likely value of 7 would still be 0.4, but the
supported range would be narrower (see Figure 3.4).

Although the concept of a supported range based on likelihood ratios
is intuitively simple, it requires some consensus about the choiceé of critical
value. The achievement of this has not proved easy, since many scientists
lack an intuitive feel for the amount of uncertainty corresponding to a stated
numerical value for the likelihood ratio. As a result, statistical theorists have
tried to find ways to measure the uncertainty about the value of a parameter
in terms of probability which, it is argued, is more easily interpreted. The
way o+ doing this which is most widely accepted in the scientific community
is by imagining a large number of repetitions of the study. This approach
is known as the frequentist theory of statistics and leads to a confidence
interval for m rather than a supported range. Another approach, often
favoured by mathematicians, is based on a probability measure for the
subjective ‘degree of belief’ that the parameter value lies in a stated credible

*These values were obtained from the graph, as illustrated. We shall be describing
more convenient approximate methods for their computation in Chapter 9.
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Fig. 3.4. The likelihood ratio based on 20 failures in 50 subjects.

interval. This is the Bayesian theory of statistics.

Luckily for applied scientists, these philosophical dlﬁ'erences can be re-
solved, at least for the analysis of moderately large studies. In this case,
we will show in Chapter 10 that the supported range based on a likelihood
ratio criterion of 0.258 coincides approximately with a 90% confidence in-
terval in the frequentist theory of statistics and a 90% credible interval in
the Bayesian theory. We shall, therefore, set aside these difficulties for the
present and continue to develop the idea of likelihood, which holds a central
place in both theories of statistics and from which most of the statistical
methods of modern epidemiology can be derived.

3.3 The log likelihood

The likelihood, when evaluated for a particular value of the parameter, can
turn out to be a very small number, and it is generally more convenient
to use the (natural) logarithm of the likelihood in place of the likelihood
itself.! When combining log likelihoods from independent sets of data the
separate log likelihoods are added to form the combined likelihood. This is
because the likelihoods themselves, being the probabilities of independent
sets of data, are combined by multiplication. The log likelihood for , in

tReaders not completely familiar with the logarithmic function, log(z) and its inverse,
the exponential function, exp(z), are referred to Appendix A.
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Fig. 3.5. The log likelihood ratio for .

this example, is
4log(r) + 6log(1 — 7).

Exercise 3.2. Calculate the log likelihood when n = 0.5 and when 7 = 0.1.

The log likelihood takes its maximum at the same value of 7 as the likeli-
hood, namely n = 0.4, so its maximum is

410g(0.4) + 610g(0.6) = —6.730.

To obtain the log likelihood ratio, this maximum must be subtracted from
the log likelihood. A graph of the log likelihood ratio is shown in Fig. 3.5.
The supported range for w can be found from this graph in the same way
as from the likelihood ratio graph, by finding those values of 7 for which
the log likelihood ratio is greater than

log(0.258) = —1.353.

Exercise 3.3. Calculate the log likelihood ratios fof 7 =0.1 and m = 0.5. Are
these values of 7 in the supported range?

In general, the log hkellhood for w, when D subjects fail and N — D

survive, is
Dlog(n} + (N — D)log(1 — ).
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‘We shall show in Chapter 9 that this expression takes its maximum value
when 7 = D/N, the observed proportion of subjects who failed.

If the binary model is parametrized in terms of the odds parameter, €,
by substituting /(1 + ) for 7 and 1/(1 + £2) for (1 — 7), we obtain the
log likelihood

Dlog(£2) — Nlog(l + Q).

This takes its maximum value when Q@ = D/(N — D), the ratio of the
number or failures to the number of survivors. The maximum value of the
log likelihood is the same whether the log likelihood is expressed in terms
of mor 2.

3.4 Censoring in follow-up studies

In our discussion of follow-up studies of the occurrence of disease events, or
failures, we have assumed that all subjects are potentially observed for the
same fixed period. In most practical studies there will be some subjects
whose follow-up is incomplete. This will occur

e when they die from other causes before the end of the follow-up in-
terval;

e when they migrate and are no longer covered by the record system
which registers failures;

e when they join the cohort too late to complete the follow-up period.

In all three cases the observation time for the subject is said to be censored.
In fact, the first type of loss to follow-up, failure due to a competing cause,
is rather different from the remaining two, but they are usually grouped
together and dealt with in the same way. In Chapter 7 we shall discuss
the justification for this practice. For the moment, we assume it to be
reasonable.

Censoring puts our argument in some difficulty. The model allows for
only two outcomes, failure and survival, while our data contains three,
failure, survival, and censoring. For the present we shall avoid this difficulty
with a simple pretence. As an illustration, suppose we have followed 1000
men for five years, during which 28 suffered myocardial infarction and 972
did not, but observation of 15 men was censored before completion of five
years follow-up. If all 15 men were withdrawn from study on the first day of
the follow up period, the size of the cohort would be 985 rather than 1000.
Conversely, if they were all withdrawn on the last day, censoring could
be ignored and the cohort size treated as a full 1000. When censoring is
evenly spread over the study interval, we would expect an answer which
lies somewhere in between these two extreme assumptions. This suggests
treating the effective cohort size as 992.5 — mid-way between 985 and
1000. This convention is equivalent to the assumption that 7.5 subjects
are censored on the first day of follow up and 7.5 on the last day.
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Table 3.1. Genotypes of 7 probands and their parents
Proband’s Parents’ genotypes
genotype Mother  Father  Number
(a,c) (8,b) (c,d) 4
(b,d) (a,b) (c,d) 1
(a,c) (a,b) (c,c) 2

With only 15.subjects lost to follow up through censoring, this crude
strategy for dealing with censoring is quite satisfactory, but if 150 were
censored it could be seriously misleading. In Chapter 4 we shall see how
this problem can be dealt with by extending the model.

3.5 Applications in genetics

The use of the log likelihood as a measure of support is of considerable
importance in genetics. However, in that field it.is conventional to use
logarithms to the base 10 rather than natural logarithms. Since the two
systems of logarithms differ only by a constant multiple (see Appendix A),
this is only a trivial modification of the idea.

As an illustration of the use of log likelihood in genetics, we continue
the example introduced in Exercises 2.4 and 2.5. Table 3.1 shows some
hypothetical data which might have formed part of that collected in a
study of an association between disease risk and presence of a certain HLA
haplotype. If we were to observe a set of families over time, in order
to relate the genotype to the eventual occurrence or non-occurrence of
disease, then we could calculate a likelihood based on the probability of
disease conditional upon genotype. However, such studies are logistically
very difficult and are rarely done. Instead it is more usual to obtain, usually
from clinicians, a collection of known cases of disease (probands) and their
relatives, and to compare the genotypes of probands with the predictions
from the model.

As in Exercise 2.5, we shall consider the model in which presence of a
given haplotype, (a) say, leads to a risk of disease @ times as high as in its
absence. Table 3.1 shows data concerning 7 probands and their parents.
For each of the genetic configurations shown in the table, we derived the
conditional probability of the genotype of a proband conditional on the
genotypes of parents in Exercise 2.5 and we showed that these probablhtles
depend only on the risk ratio parameter 6.

Exercise 3.4. Write down the expression for the log likelihood as a function
of the unknown risk ratio, 8, associated with presence of haplotype (a). What
is the log likelihood ratio for the value § = 1 (corresponding to there being no
increase in risk) as compared with § = 6.0 (which is the most likely value of § in
this case). Is the value # = 1 supported?
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Solutions to the exercises

3.1  The probability of the observed data when 7 = 0.4 is
0.4* x 0.6% = 1.19 x 1073,

which is more than the probability when 7 = 0.5. It follows that 7 = 0.4
is more likely than 7 = 0.5.

3.2 The log likelihood when 7=0.5 is
410g(0.5) + 61og(0.5) = —6.93.
The log likelihood when 7 = 0.1 is

410g(0.1) + 61og(0.9) = —9.84.

0

3. The maximum log likelihood, occurring at 7 = 0.4, is
41log(0.4) + 6log(0.6) = —6.73

so that the log likelihood ratio for 7 = 0.5 is —6.93 — (—6.73) = —0.20. For
m=0.1it is —9.84 — (—6.73) = —3.11. Thus 0.5 lies ‘within the supported
range and 0.1 does not.

3.4  From the solution to Exercise 2.5, the conditional probabilities for
each of the three genetic configurations are 6/(26 + 2), 1/(20 + 2), and
6/(8 + 1). Thus, the log likelihood is

0 1 0
— J+1log———) +2l0g ().
41°g<29+2)+ 1°g<29+2)+ 1Og<6)+1)

At 6 = 1.0 this takes the value

1 1 1
= Z)+2log (=) =-s.
4log <4) + 1log <4) + 2log (2) 8.318,

and at 6 = 6.0 (the most likely value) it is

6\ 1 6

The log likelihood ratio for # = 1 is the difference between these, —1.981.
Thus the parameter value # = 1 lies outside the limits of support we have
suggested in this chapter.
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